Домой Экология Ветрянные электростанции – альтернатива топливу

Ветрянные электростанции – альтернатива топливу

621
0

Альтернативная энергетика: за чем будущее?

Ветрянные электростанции – альтернатива топливу

Сегодня весь мир обеспечен электроэнергией благодаря сжиганию угля и газа (ископаемое топливо), эксплуатации водного потока и управлению ядерной реакцией. Эти подходы достаточно эффективны, но в будущем нам придётся от них отказаться, обратившись к такому направлению, как альтернативная энергетика.

Во многом эта необходимость обусловлена тем, что ископаемое топливо ограничено. Кроме того традиционные способы добычи электроэнергии являются одним из факторов загрязнения окружающей среды. Поэтому мир нуждается в «здоровой» альтернативе.

Предлагаем свою версию ТОПа нетрадиционных способов получения энергии, которые в будущем могут стать заменой привычным электростанциям.

7 место. Распределённая энергетика

Перед тем как рассматривать альтернативные источники энергетики, разберём одну интересную концепцию, которая в перспективе способна изменить структуру энергетической системы.

Сегодня электроэнергия производится на больших станциях, передаётся на распределительные сети и поступает в наши дома. Распределённый подход подразумевает постепенный отказ от централизованного производства электричества. Добиться этого можно посредством строительства небольших источников энергии в непосредственной близости к потребителю или группе потребителей.

В качестве источников энергии могут использоваться:

  • микротурбинные электростанции;
  • газотурбинные электростанции;
  • паровые котлы;
  • солнечные батареи;
  • ветряки;
  • тепловые насосы и пр.

Такие миниэлектростанции для дома будут подключены к общей сети. Туда будут поступать излишки энергии, а при необходимости электросеть сможет компенсировать недостаток питания, например, когда солнечные панели работают хуже из-за облачной погоды.

Однако реализация этой концепции сегодня и в ближайшем будущем маловероятна, если говорить о глобальных масштабах. Связанно это в первую очередь с большой дороговизной перехода от централизованной энергетики к распределённой.

6 место. Грозовая энергетика

Зачем генерировать электричество, когда его можно просто «ловить» из воздуха? В среднем один разряд молнии – это 5 млрд Дж энергии, что эквивалентно сжиганию 145 л бензина. Теоретически грозовые электростанции позволят снизить стоимость электроэнергии в разы.

Выглядеть всё будет так: станции размещаются в регионах с повышенной грозовой активностью, «собирают» разряды и накапливают энергию. После этого энергия подаётся в сеть.

Ловить молнии можно с помощью гигантских громоотводов, но остается главная проблема – за доли секунды накопить как можно больше энергии молнии.

На современном этапе не обойтись без суперконденсаторов и преобразователей напряжения, но в будущем возможно появление более деликатного подхода.

Концепт громовой электростанции

Если говорить об электричестве «из воздуха», нельзя ни вспомнить о приверженцах образования свободной энергии. Например, Никола Тесла в своё время якобы продемонстрировал устройство для получения электрического тока из эфира для работы автомобиля.

Подробнее: Интересные изобретения Николы Теслы

5 место. Сжигание возобновляемого топлива

Вместо угля на электростанциях можно сжигать так называемое «биотопливо». Таковым является переработанное растительное и животное сырьё, продукты жизнедеятельности организмов и некоторые промышленные отходы органического происхождения. В качестве примера можно привести обычные дрова, щепу и биодизель, который встречается на заправках.

В энергетической сфере чаще всего применяется древесная щепа. Она собирается при лесозаготовке или на деревообрабатывающем производстве. После измельчения она прессуется в топливные гранулы и в таком виде отправляется на ТЭС.

К 2019 году в Бельгии должно завершиться строительство крупнейшей электростанции, которая будет работать на биотопливе. Согласно прогнозам, она должна будет производить 215 МВт электроэнергии. Этого хватит на 450 000 домов.

Будет ли альтернативная энергетика развиваться в направлении биотоплива пока маловероятно, ведь есть более перспективные решения.

4 место. Приливные и волновые электростанции

Традиционные гидроэлектростанции работают по следующему принципу:

  • Напор воды поступает на турбины.
  • Турбины начинают вращаться.
  • Вращение передаётся на генераторы, которые вырабатывают электроэнергию.
  • Строительство ГЭС обходится дороже ТЭС и возможно только в местах с большими запасами энергии воды. Но самая главная проблема – это нанесение вреда экосистемам из-за необходимости строительства плотин.

    Приливные электростанции работают по схожему принципу, но используют для выработки энергии силу приливов и отливов.

    «Водные» виды альтернативной энергетики включают такое интересное направление, как волновая энергетика. Её суть сводится к генерации электричества посредством использования энергии волн океана, которая гораздо выше приливной. Самой мощной волновой электростанцией на сегодня является Pelamis P-750, которая вырабатывает 2,25 МВт электрической энергии.

    Раскачиваясь на волнах, эти огромные конвекторы («змеи») изгибаются, вследствие чего внутри приходят в движение гидравлические поршни.

    Они прокачивают масло через гидравлические двигатели, которые в свою очередь вращают электрогенераторы. Полученное электричество доставляется на берег через кабель, который проложен по дну.

    В перспективе количество конвекторов будет многократно увеличено и станция сможет вырабатывать до 21 МВт.

    3 место. Геотермальные станции

    Альтернативная энергетика неплохо развита и в геотермальном направлении. Геотермальные станции вырабатывают электричество, фактически преобразуя энергию земли, а точнее — тепловую энергию подземных источников.

    Существует несколько типов таких электростанций, но во всех случаях они основываются на одинаковом принципе работы: пар из подземного источника поднимается по скважине и вращает турбину, подключенную к электрогенератору. Сегодня распространена практика, когда в подземный резервуар на большую глубину закачивается вода, там она под воздействием высоких температур испаряется и в виде пара под давлением поступает на турбины.

    Чистая энергия ветра в Ваш дом!

    Ветрянные электростанции – альтернатива топливу

    Компания ЭнерджиВинд на рынке России и стран СНГ является единственным серийным производителем однолопастных ветрогенераторов. Наша разработка является уникальной и поэтому мы можем предоставить нашим покупателям ветряные электростанции по отношению к китайским трехлопастным моделям ветрогенераторов:

    • с большей, чем в 2 раза скоростью вращения лопасти;
    • с более низкими и выгодными ценами;
    • с высоким качеством продукции;
    • с гарантийными обязательствами;
    • с долгим сроком службы;
    • не требует топлива.

    Если Вы используете бензогенераторы, то с установкой у себя дома нашей ветряной электростанции Вам не придется терпеть шум бензогенератора, мучаться с доставками топлива и постоянными заправками, а также при каждодневной работе Вам не придется через полгода — год ехать за новым, т.к. предыдущий сломался.

    Ветряные электростанции в России с каждым годом становятся все более популярным альтернативным источником энергии для дома. В последние 5 лет мы наблюдаем повышение интереса к ветрякам.

    Ведь окупаемость нашей установки с учетом ежегодного увеличения государством цен на энергию будет составлять от 7 до 12 лет. Таким образом использование энергии ветра позволит Вам сэкономить деньги на ближайшие 30-40 лет, а за 7-12 лет Вы полностью покроете стоимость ветрогенератора.

    Хватит складывать деньги в чужой карман!

    Будьте независимыми и принесите благо природе.  Пользуйтесь тем, чем судьба наградила Вас с рождения — Светом Солнца, Воздухом, Водой, Землёй!

    Как работает наш ветряк?

    На схеме показано как чистая энергия ветра поступает в Ваш дом и предоставляет возможность пользоваться электроприборами.

    • При ветре около 3м/с лопасть ветрогенератора начинает вращаться и вырабатывать энергию, которая поступает на блок обработки электроэнергии и зарядки аккумуляторов (Блок ОЭЗА).
    • С блока ОЭЗА энергия поступает на аккумуляторные батареи, которые нужны для того, чтобы у Вас всегда в доме было электричество и в безветренное время.
    • С помощью инвертора энергия с аккумуляторов преобразуется в 220В, что дает возможность использовать электроприроборы в доме.

    Ветрогенераторы, ветряные электростанции — альтернативные источники энергии

    Ветрянные электростанции – альтернатива топливу

    Ветер, и ветровая энергия, давно используются человечеством в своих целях. Жители древнего Вавилона и Китая использовали силу ветра для полива орошаемых культур в сельском хозяйстве. А первые парусные лодки появились еще раньше.

    В средние века в Европе использовались ветряные мельницы, чтобы размолоть зерно в муку. Поэтому можно смело заявить об эффективности ветровой энергии в истории человечества. Физически процесс происходит следующим образом.

    Солнце нагревает атмосферу неравномерно, поэтому некоторые участки теплее, а некоторые – холоднее. Воздух движется из теплых участков — в холодные, создавая ветер.

    Эту силу ветра и используют в ветрогенераторах (ветряные электростанции). Ветер обдувает винт ветрогенератора, тем самым приводя его в движение. Для вращения винта, нужен ветер, со скоростью около 25 км/ч.

     

    Конструкция ветрогенератора

    Сам ветрогенератор состоит из следующих основных частей:

    • Ротор (лопасти ветряной электростанции) — преобразует энергию ветра в энергию вращения. Большинство современных роторов ветровых турбин состоит из трех лопастей.
    • Современные лопасти ветряных электростанций в диапазоне 30 метров в длину, как правило, изготовлены из армированного стекловолокном полиэстера или древесно-эпоксидной смолы. Скорость вращения лопастей от 12 до 24 оборотов в минуту на низкой скорости.
    • Редуктор повышает скорость вращения вала с низкой скорости (приблизительно от 12 до 24 оборотов в минуту) до высокой скорости вращения (примерно 1000 — 3000 оборотов в минуту), и приводит в движение генератор. Некоторые современные ветряки имеют генератор, подключенный напрямую к лопастям.
    • Генератор использует магнитные поля, чтобы преобразовать результирующую вращательную энергию в электрическую энергию.
    • Анемометр и флюгер расположены на задней стороне корпуса ветровой турбины и измеряют скорость ветра. Собранная информация используется системой управления для того, чтобы вырабатывать максимальное количество энергии. Данные скорости ветра также используются для контроля работы и позволяют операционной системе начинать и останавливать турбину. Современная ветряная электростанция начинает вырабатывать энергию при скорости ветра от 4 м / с и выключается при скорости около 25 м / с. Механизм рыскания поворачивает ротор в преобладающее направление ветра.
    • Башня ветрогенератора изготавливается из стальных труб, хотя решетчатые башни до сих пор используются в некоторых странах. Башни для современных ветровых электростанций бывают высотой от 60 метров до 100 метров.
    • Трансформатор преобразует напряжение, которое требуется для электрической сети. Трансформатор может быть встроен в башню или расположен у основания башни.

    Лучшие места для установки ветряных электростанций — это прибрежные районы, которые открыты сильным и постоянным потокам ветра. Некоторые ветрогенераторы устанавливают прямо в море. Лопасти специально поднимают на максимальную высоту, туда, где ветер имеет наибольшую силу.

    Плюсы использования ветровых электростанций (ветрогенераторов):

    • Ветряная энергия довольно дешева, генераторы не нуждаются ни в каком топливе
    • Не производит выбросов, или отходов производства энергии
    • Отлично подходит для обеспечения энергией отдаленных районов

    Недостатки ветрогенераторов

    • Ветер не всегда предсказуем – иногда бывают периоды без ветра по несколько дней
    • Земля под ветрогенераторы рядом с побережьем обычно стоит недешево

    Одна из самых распространенных проблем в поиске подходящих мест для строительства ветровых турбин является движение военных и гражданских самолетов. Вот почему авиация является одним из первых вопросов, которые исследуются при строительстве ветрогенератора в определенном месте. Здесь есть проблемы и использования радаров и физической посадки – взлета самолета.

    Но проблем с авиацией можно избежать несколькими способами:

    • Снижение общей высоты турбины ветрогенератора
    • Уменьшение количества или ориентации турбин

    Проектирование и создание проекта ветряной электростанции проводится в несколько этапов. Проводится полное технико-экономическое. Это технико-экономическое обоснование включает в себя подробные освещение пунктов о местных радарах, авиации, археологии, животного мира, доступе телекоммуникаций, гидрологии местности и расположении.

    Строительство ветряной электростанции

    Строительство ветряной электростанции может занять от 4 месяцев постройки одной башни ветрогенератора, до 2 лет — большой электростанции, состоящей из 20 и более турбин. Срок службы ветрогенератора по проекту считается равным 20 – 25 лет.

    После этого генераторы или заменяются на новые или демонтируются.

    Причем в развитых странах демонтаж происходит самым тщательным образом – демонтируются все следы человеческого вмешательства в природу, убираются все остатки кабелей, деталей, строительного мусора, восстанавливается природный слой почвы.

    Строительные работы, необходимые для строительства ветряной электростанции меняются от места к месту, но обычно включают следующие этапы:

    • Временная строительная площадка — размером примерно 50 х 50 м
    • Основание ветряной башни ( из железобетона ) Бетонированная площадка ( в том числе для стоянки автотранспорта), прилегающая к турбине — обеспечивает стабильную основу, на которой держится сама башня генератора.
    • Здание контроля и управления — площадь примерно 6м х 6м, здание строится для размещения электрических распределительных устройств, приборов учета и т.д.

    Ветровые электростанции для дома

    Ветрянные электростанции – альтернатива топливу

    Получение электроэнергии с помощью ветровых электростанций всегда интересовало человечество. Энергию ветра принято относить к возобновляемым видам, так же как солнечную, внутренних вод, термальную и биомассы.

    Потенциал этой энергии на земном шаре в 30 раз перекрывает сегодняшние потребности.

    Строительство установок, получающих электричество при преобразовании энергии потока воздуха, считается перспективным направлением во всем мире, несмотря на низкий КПД – 20-30%.

    Устройство и основные виды ветрогенераторов

    Схема, по которой собирается ветровая электростанция для получения электричества, достаточна проста.

    Энергия ветра преобразуется с помощью ветрогенератора и выпрямительно-зарядного устройства (контроллера) в постоянный электрический ток, обычно 12/24/48 вольт.

    Ток идет на подзаряд аккумуляторной батареи (по принципу автомобильной), затем подается на инвертор, где постоянный ток преобразуется в переменный 220-230В.

    На сегодняшний день реально работают три вида ветрогенераторов:

    – с вертикально-ориентированной осью вращения;

    – с горизонтальной, ориентированной перпендикулярно потоку воздуха;

    – с горизонтальной, ориентированной параллельно потоку.

    Ветровая электростанция с вертикальным ветрогенератором наиболее проста при изготовлении и монтаже: не нужно ориентироваться на направление ветра, поэтому нагрузка на конструкцию гораздо меньше. Лопасти у этих устройств выпускаются в виде чаш, турбин или S-образные.

    При горизонтальной оси вращения энергия ветра преобразуется в силу сопротивления или подъемную. Количество лопастей у этих устройств может быть от одной до пятидесяти.

    В рамках основной классификации существует много разнообразных, конструктивно соединенных, либо совершенно новых изобретений.

    Ветровые электростанции для дома: целесообразность выбора

    Проект электроснабжения строящегося (или реконструируемого) дома должен решать три проблемы:

    – надежность получения электроэнергии;

    – обеспечение необходимой мощности потребления;

    – задействование необходимого количества источников получения электричества.

    В городской черте, где развита электросеть, вопрос надежности получения электричества стоит только лишь для отдаленных районов, либо районных городов и поселков.

    Ветровая электростанция для дома в этих случаях нецелесообразна: отключения происходят лишь при авариях в сети и ликвидируются максимум за сутки.

    Как дополнительный источник обычно выбирается дизельная (бензиновая) или газовая мини электростанция.

    При обустройстве коттеджа в отдаленном районе или строительстве фермы, где нет близко проложенной ЛЭП, встает вопрос о стабильной схеме получения электроэнергии. Обычно проблема решается так: дизельная (или бензиновая) электростанция, а в качестве альтернативного источника (с целью удешевления стоимости единицы мощности) успешно реализуются проекты применения энергии ветра или солнца.

    Ветровая электростанция должна обеспечивать необходимый запас мощности для реального потребления. В этом случае не обойтись без мощной аккумуляторной батареи и надежного инвертора. В качестве альтернативного источника используется дизельный генератор.

    Преимущества и недостатки получения электричества от ветроустановки

    При среднестатистическом домовом потреблении (освещение, отопление, бытовая техника) достаточно мощности от 500вт до 1000/1500 вт. При установке ветрогенератора необходимо помнить, что чем выше вырабатываемая им мощность, тем больше размер лопастей и, соответственно, выше цена.

    Достоинством установок принято считать экологичность, независимость от внешней подачи энергии (либо топлива), простота в обслуживании.

    Обычно выделяют следующие недостатки ветровых электростанций:

    – большие единовременные начальные вложения, отсюда сравнительно высокая стоимость единицы электроэнергии;

    – зависимость установки от наличия дней, когда скорость ветра оптимальна (шесть – семь метров в секунду), именно при таких показателях установка выходит на паспортную (проектную) мощность;

    – автономная ветровая электростанция может работать только при наличии аккумуляторной батареи большой емкости и при мощном инверторе, а в качестве дополнения в безветренные дни нужен дизель-генератор, что значительно удорожает проект;

    – большой срок окупаемости: в среднем от семи до десяти лет.

    Требования к выбору места для монтажа мачты

    Для работы ветрогенератора любой мощности необходим ветер. Для России в среднем считается, что ветер дует только лишь в течение 270-280 дней в году. Приморские и горные участки имеют другую статистику, более благоприятную. Именно там и идет основное освоение силы ветра, как даровой энергии.

    Чем выше мачта, тем большую скорость развивает воздушный поток. Обычно ветряки монтируют на высоте не менее четырех метров от уровня дома (в среднем от четырнадцати до двадцати четырех метров).

    Площадка для установки выбирается на расстоянии от дома минимально кратной трем к высоте мачты.

    Устройство монтируется либо на бетонное основание (что достаточно дорого и трудоемко), либо с помощью растяжек.

    ]

    Для монтажа ветрогенератора, изготовленного на производстве, привлекаются специализированные организации. Обычно это или сам завод-изготовитель, или дистрибьюторы иностранных фирм. Специалисты предлагают схему ветровой электростанции, выбирают место установки мачты, монтируют оборудование и производят запуск.

    Ветровая электростанция своими руками

    В последнее время, когда удорожание электроэнергии происходит с пугающим население постоянством, увеличивается интерес к ветровым электростанциям в России. Ветровая мини электростанция (ветряк) проектируется, изготавливается народными умельцами и монтируется без помощи специалистов.

    Самой простой в изготовлении считается ветровая электростанция с установкой, имеющей вертикальную вращательную ось. Она не требует усиленной мачты, легко рассчитывается, легко монтируется и, самое главное, низка в цене. Удорожание происходит за счет аккумуляторной батареи нужной емкости и надежного инвертора.

    Ветряк, изготовленный для вращения на горизонтальной оси, требует тщательного крепления лопастей (их центрирования), но выглядит более элегантно и изысканно. Его детали дороже в изготовлении, а дополнительное оборудование такое же, как и у вертикальной установки.

    Ветровые электростанции своими руками сегодняшние умельцы предпочитают делать полностью, с нуля. Генератор разрабатывается на основе асинхронного двигателя, плюс выпрямитель и аккумуляторная батарея из автомобиля. Если ограничиться таким набором, то вырабатываемой электроэнергией можно нагревать воду в бойлере, запитывать водяной насос (согласовав питающее напряжение).

    С инвертором небольшой мощности можно даже включать освещение и другие несложные электроприборы, не требующие качественных характеристик тока (компьютер, телевизор подключать можно только с инвертором, имеющим на выходе необходимые характеристики по синусоидальности, частоте и др.).

    Основные зарубежные производители ветровых электростанций: сравнительная стоимость установок

    Использование, а соответственно и изготовление ветрогенераторов для получения электричества было освоено впервые в Дании еще в конце девятнадцатого века.

    Отсутствие своих энергоносителей заставляет многие страны идти по пути освоения энергии воздушных потоков и возводить как мощные (сотни мегаватт) ВЭУ, так и ветровые электростанции для дома.

    Ниже приведен список наиболее известных фирм, поставляющих свою продукцию всему миру.

    Зарубежные производители ветрогенераторов:

    – Дания Vestas – доля рынка 12,7%;

    – Китай Sinovel, Goldwind, Guodian United Power, Ming Yang – доля рынка 28,7% в совокупности всех фирм;

    – Испания Gamesa – доля рынка 8 %;

    – Германия Enercon, Siemens – совокупная доля рынка 14,1%;

    – США GE Energy – доля рынка 7,7%;

    – Индия Suzion – доля рынка 7,6%.

    Самыми дешевыми считаются китайские установки. В зависимости от мощности их можно приобрести по цене от 18-20 тысяч рублей. Следует отметить, что такие установки (мощность от 100-200 Вт) не подлежат ремонту и обычно не комплектуются мачтой. Ветроэлектростанции среднего ценового сегмента из Китая считаются надежными, служат более 15 лет.

    Датские, испанские, немецкие установки более качественные, их монтаж и запуск давно освоили специализированные организации, но они дороги. От 1000$ до 2000-2500$ при мощности от 200 Вт.

    Ветровые электростанции в России: цены и производители

    В последние 20 лет отмечен возросший интерес к производству оборудования для ветроэлектростанций. Отечественные производители разработали и успешно поставляют потребителям недорогие устройства. В среднем их можно приобрести от 40-45 тыс. руб. при мощности от 300 Вт.

    Ниже приведен список отечественных производителей, освоивших производство и выпускающих собственные модели ветровых электростанций:

    – «РесурсПромАльянс» в Челябинске;

    – «Стройинжсервис» в Рыбинске;

    – RKraft в Москве;

    – «Энерго-Экологические Системы» НПП в Москве;

    – ЛМП «Ветроэнергетика» в Хабаровске;

    – «Сапсан-Энергия» в Москве;

    – «ГРЦ Вертикаль» в Миассе;

    – «СКБ Искра» в Москве;

    – «Ветро-Свет» в С-Петербурге.

    Плюсы и минусы ветроэнергетики

    Ветрянные электростанции – альтернатива топливу

    Ветер, как неисчерпаемый источник экологически чистой энергии, находит все более широкое применение и приобретает все большую общественную поддержку.

    Начало использования энергии ветра восходит к древнему Вавилону (осушение болот), Египту (помол зерна), Китаю и Маньчжурии (откачка воды с рисовых полей). В Европе эта технология появилась в XII веке, но современные технологии стали использоваться только в XX веке.

    Ветряные электростанции могут функционировать в районах со скоростью ветра выше 4,5 м/с. Они могут работать с сетью существующих электростанций либо быть автономными системами. Возникают также так называемые «ветряные фермы» — энергоблоки с некоторым количеством единиц техники, общих для всей системы.

    Наибольшее количество энергии из ветра в настоящее время производится в Соединенных Штатах, а в Европе — в Дании, Германии, Великобритании, Нидерландах. В Германии находится самая мощная электростанция в мире — 3 МВт. Aeolus II работает на ветряной ферме Вильгельмсхафен и производит ежегодно 7 млн. кВт/ч энергии, обеспечивая около 2 тысяч домашних хозяйств.

    Всего в мире уже более 20 тысяч ветряных электростанций.

    Несмотря на массовое производство, стоимость строительства современной ветряной электростанции велика. Однако, следует отметить, что ничтожна стоимость ее эксплуатации. Экологические и экономические выгоды зависят от правильного расположения.

    Требует это детального и всестороннего анализа как технических аспектов, так и экологических, а также финансовых. Ветряная энергетика соответствует всем условиям, необходимым для причисления ее к экологически чистым методам производства энергии. Ее основными преимуществами являются:1.

    Отсутствие загрязнения окружающей среды — производство энергии из ветра не приводит к выбросам вредных веществ в атмосферу или образованию отходов.2. Использование возобновляемого, неисчерпаемого источника энергии, экономия на топливе, на процессе его добычи и транспортировки.3.

    Территория в непосредственной близости может быть полностью использована для сельскохозяйственных целей.4. Стабильные расходы на единицу полученной энергии, а также рост экономической конкурентоспособности по сравнению с традиционными источниками энергии.5.

    Минимальные потери при передаче энергии – ветряная электростанция может быть построена как непосредственно у потребителя, так и в местах удаленных, которые в случае с традиционной энергетикой требуют специальных подключений к сети.6. Простое обслуживание, быстрая установка, низкие затраты на техническое обслуживание и эксплуатацию.

    Противники ветряной энергетики находят в ней также и недостатки. Большинство потенциальных преград для использования этого вида энергии чрезмерно пропагандируются как недостатки, которые делают невозможным ее развитие. По сравнению с вредом, причиняемым традиционными источниками энергии, они незначительны:1.

    Высокие инвестиционные затраты — они имеют тенденцию к снижению в связи с новыми разработками и технологиями. Также стоимость энергии из ветра постоянно снижается.2. Изменчивость мощности во времени — производство электроэнергии зависит, к сожалению, от силы ветра, на которую человек не может повлиять.3.

    Шум – исследования шума, выполненные с использованием новейшего диагностического оборудования, не подтверждают негативного влияния ветряных турбин. Даже на расстоянии 30-40 м от работающей станции, шум достигает уровня шума фона, то есть уровня среды обитания.4.

    Угроза для птиц — в соответствии с последними исследованиями, вероятность столкновения лопастей ветряка с птицами не больше, чем в случае столкновения птицы с высоковольтными линиями традиционной энергетики.5. Возможность искажения приема сигнала телевидения — незначительна.6. Изменения в ландшафте.

    Несмотря на все преимущества, ветряки имели серьезные недостатки. Эффект их работы зависел от погодных условий, поэтому в безветренные дни и дни, когда ветер очень сильный, ветряки не могли работать. Однако, энергия всех видов была, есть и будет нам нужна. Само слово «энергия» происходит от греческого слова energia и означает деятельность, активность.

    Ее использование может быть разнообразным. Наиболее всего мы нуждаемся в ней в промышленном производстве, отоплении, транспорте, для освещения. В начале она поставлялась нам из окружающей среды (природные ресурсы), такие как бурый уголь, древесина или нефть. Сегодня трудно представить себе жизнь без электроэнергии.

    Электричество нам необходимо так же, как вода и воздух.

    Альтернативная энергетика — Ветровая энергетика

    Ветрянные электростанции – альтернатива топливу

    Как известно, мы живем на дне воздушного океана, в мире ветров. Энергия  движущихся воздушных масс огромна. Запасы энергии ветра более чем в сто раз превышают запасы  гидроэнергии  всех рек планеты. Постоянно и повсюду на земле дуют ветры. Климатические  условия позволяют  развивать ветроэнергетику на огромной территории. 

    На первый взгляд ветер кажется одним из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может «работать» зимой и летом, днем и ночью, на севере и на юге. Но ветер — это очень рассеянный энергоресурс. Ветровая энергия практически всегда «размазана» по огромным территориям.

    Основные параметры ветра — скорость и направление, которые меняются подчас очень быстро и непредсказуемо, что делает его менее надежным, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность «ловить” кинетическую энергию ветра с максимальной площади.

    Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.

    «Times New Roman»,»serif»;mso-fareast-font-family:»Times New Roman»;mso-fareast-language:
    RU score=28.25>

    К решению первой проблемы привлекли специалистов самолетостроения, умеющих выбрать наиболее целесообразный профиль лопасти, для получения максимальной энергии ветра. Усилиями ученых и инженеров созданы самые разнообразные конструкции современных ветровых установок.

     Это многолопастные «ромашки» и винты вроде самолетных пропеллеров с тремя, двумя и даже одной лопастью. Вертикальные конструкции хороши тем, что улавливают ветер любого направления; остальным приходится разворачиваться по ветру. Такой вертикальный ротор напоминает разрезанную вдоль и насаженную на ось бочку.

    Встречаются и оригинальные решения: например, тележка с парусом ездит по кольцу из рельс, а ее колеса приводят в действие электрогенератор.

    Наиболее распространенным типом ветровых энергоустановок (ВЭУ) является турбина с горизонтальным валом и числом лопастей от 1 до 3. По оценкам различных авторов, ветроэнергетический потенциал Земли равен 1200 ТВт, однако использование этого вида энергии в различных районах Земли неодинаковы.

     В России валовой потенциал ветровой энергии — 80 трлн. кВт/ч в год, а на Северном Кавказе — 200 млрд. кВт/ч (62 млн. т усл. топлива). Эти величины существенно больше соответствующих величин технического потенциала органического топлива.

     Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования.

    Ветровые электростанции выгодны, как правило, в регионах, где среднегодовая скорость ветра составляет 6 метров в секунду и выше и которые бедны другими источниками энергии, а также в зонах, куда доставка топлива очень дорога.

    «Times New Roman»,»serif»;mso-fareast-font-family:»Times New Roman»;mso-fareast-language:
    RU score=48.25>

    Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из них.

     Следует также учитывать те изменения, которые вносятся  ветровыми установками в ландшафт местности, их размещение должно соответствовать не только стандартам безопасности и эффективности, но и правильного размещения на местности (мельницы, расположенные хаотично менее эффективны, чем те, которые расположены в определенной геометрической последовательности). 

    Малые ВЭУ обычно предназначаются для автономной работы. Системы, которым они выдают энергию, привередливы, требуют подачи энергии более высокого качества и не допускают перерывов в питании, например, в периоды безветрия.

    Поэтому им необходим дублер, то есть резервные источники энергии, например, дизельные двигатели той же, как у ветроустановок, или меньшей мощности. Что касается более мощных ветроустановок (свыше 100кВт), то они применяются как электростанции и обычно включаются в энергосистемы.

    Обычно на одной площадке устанавливаются достаточно большое количество ВЭУ, образующих так называемую ветровую ферму. На одном краю фермы может дуть ветер, в то время как на другом в это время может быть тихо. Ветряки нельзя ставить слишком тесно, чтобы они не загораживали друг друга. Поэтому ферма занимает много места.

    Ветроэнергетика сильно зависит от капризов природы. Скорость ветра бывает настолько низкой, что ветрогенератор совсем не может работать, или настолько высокой, что ветряк необходимо остановить и принять меры по его защите от разрушения.

    ]

    Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Для  эффективной работы  ВЭУ их размещают на открытых пространствах, реже на территориях сельскохозяйственных угодий,  что повышает их продуктивность.

    В горных районах ветряки работают эффективно из-за природных особенностей данных местностей, там преобладает движение воздушных масс с большой силой  и скоростью, к тому же это дает энергию в труднодоступные районы.

        Правильная установка влияет на КПД ветра агрегатов, поэтому удельная выработка электрической энергии в течение года составляет 15 – 30% энергии ветра или даже меньше в зависимости от местоположения и параметров установки.

    Ветряные двигатели не загрязняют окружающую среду, отсутствуют влияния на тепловой баланс атмосферы Земли, отсутствуют потребления кислорода, выбросов углекислого газа и других загрязнителей. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры. 

    «Times New Roman»,»serif»;mso-fareast-font-family:»Times New Roman»;mso-fareast-language:
    RU score=37.25>

    Сегодня ветроэлектрические установки надежно снабжают током нефтяников, они успешно работают в труднодоступных  районах,  на дальних островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

    В проектировании установки самая трудная проблема состоит в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто какую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 — 60 Гц.

    Поэтому угол наклона лопастей по отношению к ветру регулируют за счет поворота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

    Одна из возникших проблем ветроустановок это избыток энергии в ветреную погоду и недостаток её в период безветрия. Способов хранения ветреной энергии очень много, рассмотрим наиболее простые.

    Один из способов состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока.

     Существуют и другие способы, и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветроустановок разлагает воду на кислород и водород.

     Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности. Рассмотрим теперь отрицательное влияние ВЭУ на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Действительно  крупные  ВЭУ влияют на телесигнал. На расстоянии до 0.

    5 км, они вызывают помехи в телесигнале, это связано с тем, что лопасти ветрового колеса ВЭУ отражают сигналы, вызывая помехи при передачи телевизионного сигнала. Вследствие работы  крупных ВЭУ больше 20 кВт возникает достаточное количества инфразвука, которое влияет на состояние человека и животных.

    При работе крупных ВЭУ возникает и естественный шум от работы ветрового колеса. Поэтому размещение ВЭУ больше 10 кВт нежелательно в переделах  черты города. С этими отрицательными факторами  пытаются бороться, в частности применяя  новые виды материала, которые способны пропускать сигналы в большом спектре и т.д.

    Ветровая энергетика вызывает все больше интерес и стремление к усовершенствованию установок для максимальной эффективности. Во многих странах их начинают применять в домах, на фермах, на небольшом производстве.

    Фото с сайта: http://ru.wikipedia.org/

    Альтернативная энергетика: солнце, воздух и вода

    Ветрянные электростанции – альтернатива топливу

    Постоянно повышающаяся потребность в энергии, новые, крайне прожорливые потребители электричества – гигантские дата-центры и электромобили для массового рынка – вынуждают человечество искать альтернативные источники энергии. Важно, чтобы они были не только высоко эффективными, но и экологически чистыми.

    Отрасли нетрадиционной энергетики

    К традиционным источникам электроэнергия относятся тепловые (уголь, газ, мазут), гидро- и атомные электростанции. Причем относительно «зелеными» считается лишь третий тип электростанций, тогда как два первых наносят ощутимый вред атмосфере и гидросфере соответственно.

    Экологически чистые (опять-таки, относительно) солнечные, ветровые и геотермальные электростанции в ряде стран мира вырабатывают до половины электричества, но их до сих пор называют альтернативными. Кроме того, существует альтернативная гидроэнергетика, подразумевающая волновые, приливные и водопадные электростанции.

    Самой же неоднозначной отраслью альтернативной энергетики является, пожалуй, биотопливо. На фоне вероятного глобального продовольственного кризиса засевать плодородные земли культурами, перерабатывающимися в биотопливо – преступление перед человечеством.

    Но давайте же поговорим о каждой отрасли альтернативной энергетики по порядку.

    Гелиоэнергетика

    Солнечные электростанции (СЭС) – одни из самых распространенных на планете, так как используют неисчерпаемый источник энергии (солнечный свет).

    В процессе выработки электричества, а при необходимости еще и тепла для обогрева жилых помещений и подачи горячей воды, они не наносят никакого вреда окружающей среде.

    Но существует обратная сторона медали: утилизация отработавших свое солнечные батарей процесс затратный и уж точно не экологически чистый.

    Солнечные панели зачастую встраивают прямо в крыши жилых домов

    Сильно зависима гелиоэнергетика от погоды и времени суток: в дождливый день и, уж тем более, ночью электричество особо-то не покачаешь. Приходится запасаться аккумуляторными батареями, что удваивает стоимость установки солнечных панелей, например, на даче.

    Лидерами в популяризации гелиоэнергетики являются Германия, Испания и Япония. Понятное дело, что преимущество тут имеют южные страны, где солнце жарко светит почти круглый год. Германия же традиционно занимает лидирующие позиции в альтернативной энергетике, поэтому даже на СЭС в этой в целом-то холодной стране делается большая ставка.

    Солнечная ферма Охотниково: живописный Крым заблестел словно огромное зеркало

    Приятно, что в вопросах гелиоэнергетики Украина не пасет задних.

    В Крыму находится сразу несколько крупных СЭС: Перово (мощность 100 МВт, 11 место в мировом рейтинге), Охотниково (80 МВт, 22 место) и Приозерная (55 МВт, 42 место).

    Безоговорочными же лидерами являются американские Агуа-Калиенте и Калифорнийская Долина, мощностью по 250 МВт каждая.

    Мощнейшая в мире солнечная электростанция Агуа-Калиенте (штат Аризона)

    Ветроэнергетика

    Обуздало силу ветра человечество довольно-таки давно: ветряные мельницы много столетий верой-правдой служили для перемолки зерна в муку. Сейчас же пришло время найти «мельницам» новое применение – гигантские лопасти, гонимые силой ветра, способны вращать мощные генераторы и таким путем эффективно вырабатывать столь нужное электричество.

    Ветрогенератор самостоятельно подстраивается под меняющееся направление ветра, свободно вращаясь на мачте

    Тройку лидеров в мировой выработке электричества с помощью ветра составляют Китай, США и Германия.

    Если же сравнивать долю ветроэлекстростанций (ВЭС) в каждой конкретной стране, то лидируют Дания, Португалия и Испания. Тут опять-таки многое зависит от климатических условий: в одних странах ветер не утихает ни на секунду, в других наоборот большую часть времени стоит штиль.

    Украине в этом плане повезло не очень: погода у нас мягкая и маловетреная. Хотя еще в 30-х годах в Крыму была построена первая в мире промышленная ветроэлектростанция, а в 1934 г.

    под руководством Юрия Кондратюка (того самого, что рассчитал траекторию полета на Луну) разрабатывался проект постройки огромной 12-мегаваттной ветростанции на горе Ай-Петри с башней высотой 165 метров и двумя 80-метровыми турбинами, размещенными на двух уровнях.

    Крупнейшая в мире ветровая электростанция London Array построена в море возле берегов Великобритании (630 МВт)

    Есть у ветроэнергетики как веские преимущества, так и столь же веские недостатки.

    В сравнении с солнечными панелями «ветряки» стоят недорого и не зависят от времени суток, а потому частенько встречаются на дачных участках. Существенный минус у ветрогенераторов только один – они изрядно шумят.

    Установку такого оборудования придется согласовывать не только с родными, но и жителями близлежащих домов.

    Геотермальная энергетика

    В районах с вулканической активностью, где подземные воды нагреваются выше температуры кипения, рационально строить геотермальные теплоэлектростанции (ГеоТЭС).

    Пожалуй, самой известной страной, где широко применяются ГеоТЭС, является Исландия.

    Оно и не странно: кипяток и пар циркулирует по трубам круглый год без остановок, что позволяет в процессе выработки электричества обходиться без дорогостоящих и трудно утилизируемых аккумуляторов.

    Несьявеллир (Исландия) – крупнейшая в Европе ГеоТЭС (120 МВт)

    Делают ставку на геотермальную энергетику и в других странах, где удалось обуздать вулканическую активность Земли: США, Новая Зеландия, Индонезия и Филиппины. Богата термальными водами и Россия: вот только новые ГеоТЭС в Сибири давненько не строили. Последние подвижки в этом направлении датируются еще временами СССР.

    Мощность ГеоТЭС «Гейзерс» (штат Калифорния, США) изначально составляла 2 тыс. МВт, но постепенно падает

    Альтернативная гидроэнергетика

    Нетрадиционное использования водных ресурсов планеты для выработки энергии подразумевает три типа электростанций: волновые, приливные и водопадные. Причем самыми перспективными из них считаются первые: средняя мощность волнения мирового океана оценивают в 15 кВт на погонный метр, а при высоте волн выше двух метров пиковая мощность может достигать аж 80 кВт/м.

    Главная проблема волновых электростанций – сложность преобразования движения волн (вверх-вниз) во вращение лопастей колеса генератора. Впрочем, последние разработки британский (проект Oyster) и российских ученых (проект Ocean RusEnergy) должны решить данную проблему.

    Oyster – высокоэффективный волновой электрогенератор, разработанный в Великобритании

    Приливные электростанции имеют значительно меньшую мощность, чем волновые, зато их куда легче и удобнее строить в прибрежной зоне морей. Гравитационные силы Луны и Солнца дважды в день меняют уровень воды в море (разница может достигать двух десятков метров), что позволяет использовать энергию приливов и отливов для выработки электричества.

    Во Франции почти полвека эксплуатируется приливная электростанция «Ля Ранс» (мощность 240 МВт), которая построена в устье реки Ранс рядом с городком Сен-Мало. Долгое время она удерживала мировое лидерство по мощности, но в 2011 году ее обошла южнокорейская Сихвинская ПЭС (254 МВт).

    ]«Ля Ранс» – одна из старейших и в то же время мощнейшая в Европе ПЭС

    Водопадные электростанции являются, пожалуй, самыми малоперспективными в отрасли гидроэнергетики. Дело в том, что по-настоящему мощных водопадов на планете не так уж и много. Вспомнить стоит разве что электростанции «Сэр Адам Бек 1» и «Сэр Адам Бек 2», построенные на Ниагарском водопаде, а точнее на его канадской стороне.

    Комплекс электростанций «Сэр Адам Бек» (США) мощностью 2 тыс. МВт построен на границе США и Канады

    Биотопливо

    Жидкое, твердое и газообразное биотопливо может стать заменой не только традиционным источникам электричества, но и бензину. В отличие от нефти и природного газа, восстановить запасы которых не представляется возможным, биотопливо можно вырабатывать в искусственных условиях.

    Простейшим биотопливом является древесина, а точнее отходы деревообрабатывающей промышленности – щепки и стружка. Спрессованные в брикеты они прекрасно горят, а нагретая с их помощью вода позволяет вырабатывать электричество и тепло, пусть и в небольших масштабах.

    Кукуруза – продукт питания и в то же время сырье для биотоплива

    Но будущее за жидким и газообразным биотопливом: биодизелем, биоэтанолом, биогазом и синтез-газом.

    Все они производятся на основе богатых сахаром или жирами растений: сахарного тростника, кукурузы и даже морского фитопланктона.

    Последний вариант так и вовсе имеет безграничные перспективы: выращивать водоросли в искусственных условиях дело не хитрое.

    Фитопланктон (крохотные морские водоросли и бактерии) – идеальное сырье для производства жидкого и газообразного биотоплива

    Будущее альтернативной энергетики

    Концепт орбитальной солнечной электростанции NASA Suntower

    Учитывая подорожание энергоносителей и подорванное доверие к атомным электростанциям, развитие альтернативной энергетики постепенно ускоряется. Ну а если смотреть на совсем уж отдаленную перспективу, то стоит упомянуть космическую энергетику.

    Концепт орбитальной солнечной электростанции NASA SERT

    Данная отрасль подразумевает размещение солнечных батарей на земной орбите и на поверхности Луны. Это позволит добывать примерно на треть больше электроэнергии, чем это возможно в условиях земной атмосферы. На Землю же передаваться выработанное электричество будет с помощью радиоволн.